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Numerical Moments Computation for CAPS/IMS
M. F. Thomsen and D. M. Delapp

24 February 2005

Abstract
This report described the theoretical and computational approach
developed at Los Alamos to calculate moments of the ion distribution
observed at Saturn by the CAPS/IMS, as reported in the SNG data
product.  The approximations, assumptions, procedures, and
instrument parameters that go into the calculation are presented, as
well as caveats about the applicability of the results.  The calculations
described here are carried out in the code MOM_SNG_NUM, Rev. 0,
dated 18 Mar 2005.
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I.  Theoretical Approach

The moments we would like to compute from CAPS measurements are the density,
vector flow velocity, and temperature tensor, defined respectively as

n = f (v)d3v
all v (1a)

V = 1
n( ) v f (v)d3v

all v (1b)

T = m
n( ) (v V)(v V) f (v)d3v

all v (1c)

The computation of moments by numerical integration over the observed distribution
normally requires that the full 4  of velocity space be measured.  Because of the limited
field of view of the CAPS instrument, even when the actuator is in full operation, simple
numerical integration of the observed distribution would lead to biased results.  The
density would obviously be underestimated, particularly if the flow is subsonic, but with
an accurate knowledge of the flow velocity, much of the missing distribution could be
reconstructed by symmetry arguments such as are used in the GSFC algorithm.  The
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biggest problem under these circumstances is the estimation of the velocity: With only
one side of the distribution observed, a simple velocity-weighted numerical integration of
the observed counts will artificially force the derived velocity to lie within the instrument
FOV and will overestimate its magnitude even if the true velocity does lie within the
observed part of velocity space.

One solution to this problem is to use a functional fit to the distribution, rather than a
numerical integration.  Our preliminary moments code (Thomsen/Delapp) fits the
observed counts to an isotropic, convecting Maxwellian.  In principle, this approach has
the advantage that it does not require the full distribution (or even a velocity-balanced
portion of it) to be measured.  In practice, it has the disadvantages of being model-
dependent, of being rather unstable (it sometimes finds a solution with the velocity well
out of the observed range of velocity space), and most troublesome, of coupling the
temperature and velocity.  The latter problem appears for example when the “cross-talk”
caused by scattering into adjacent detectors is not adequately removed; the result is an
overestimate of the temperature, which forces an underestimate of the flow velocity
(since the average energy of the observed distribution is robustly determined).

The approach used in the GSFC code is to find the point in velocity space from which the
observed distribution gives zero net flux.  Because of the imbalance in velocity space
coverage by CAPS, the GSFC method mirrors any unbalanced observation points about
the trial bulk velocity, thereby enforcing balance and a zero contribution to the net flux
from such unbalanced points.  An equivalent alternative is simply to exclude such
unbalanced points entirely from the net flux calculation, and this is the basis on which we
build our code.  The approach described below ought to give very similar results to the
Goddard approach.

The moments we are interested in are all integrals of the form

M = g(v) f (v)d3v
all v (2)

where f(v) is the velocity distribution function, and the velocity functions g(v) are related
to the desired moments:

g(v) = 1 -> density
g(v) = v -> velocity
g(v) = vv -> temperature

The integral in Equation 2 is to be taken over the entire volume of velocity space, which
is comprised of the part that CAPS views (obs) and the part CAPS does not view (unobs):

M = g(v) f (v)d3v
all v

= g(v) f (v)d3v
obs

+ g(v) f (v)d3v
unobs (3)
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To proceed, we will invoke the presumed symmetry of the velocity distribution function
in the reference frame moving with the flowing plasma.  Specifically, we will assume that
the distribution is mirror symmetric about the flow velocity V.  Thus, we assume that

f(2V-v) = f(v) (4)

If we knew the actual velocity V of the plasma, we could divide the observed volume of
velocity space into a "symmetric" portion (sym), containing those observation points
whose mirrored (about V) points are also contained in the observed volume of velocity
space, and an "unbalanced" portion (unbal), containing observed measurement points
whose mirrored values do not lie within the observed space.  Then, Equation 3 becomes

M = g(v) f (v)d3v
sym

+ g(v) f (v)d3v
unbal

+ g(v) f (v)d3v
unobs

The unobserved portion of velocity space also consists of two parts: 1) the mirror of the
unbalanced portion, and 2) a remainder:

M = g(v) f (v)d3v
sym

+ g(v) f (v)d3v
unbal

+ g(v) f (v)d3v
mir unbal

+ Rem
(5)

We now assume that compared to the amount of the distribution contained in the sym,
unbal, and mir unbal portions of velocity space, the remainder term is negligible, giving
our adopted moment equation:

M g(v) f (v)d3v
sym

+ g(v) f (v)d3v
unbal

+ g(v) f (v)d3v
mir unbal (6)

With the assumption of mirror symmetry, Equation 4, the integral over mir unbal can be
related to the integral over unbal:

g(  v ) f (  v )d3  v 
mir unbal

= g(2V v) f (v)d3v
unbal (7)

For the moments of interest, we therefore have the following expressions for the three
contributions in Equation 6:

for g(v) = 1,

s f (v)d3v
sym (8a)

u f (v)d3v
unbal (8b)

m f (v)d3v
mir unbal

= f (v)d3v
unbal

= u

(8c)

for g(v) = v,
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js v f (v)d3v
sym (9a)

ju v f (v)d3v
unbal (9b)

jm v f (v)d3v
mir unbal

= (2V v) f (v)d3v = 2 uV
unbal

ju
(9c)

and for g(v) = vv,

s
vv f (v)d3v

sym (10a)

u
vv f (v)d3v

unbal (10b)

m
vv f (v)d3v

mir unbal

= (2V v)(2V v) f (v)d3v
unbal

= 4 uVV 2Vju 2juV +
u (10c)

Remembering that the sum of the sym and unbal volumes of velocity space are equal to
the total observed volume (obs), we can further define the corresponding integrals over
obs:

o f (v)d3v
obs

= s + u

(11a)
jo v f (v)d3v

obs

= js + ju
(11b)

o
vv f (v)d3v

obs

=
s
+

u

(11c)

We then use Equations 11a-c and Equations 8-10 to express the desired moments
(Equation 1) in terms of obs and sym quantities.

The density is quite straightforward:

n = f (v)d3v
all v

= s + u + m = s + 2 u = 2 o s

(12a)

For the velocity, we find

nV = v f (v)d3v
all v

= js + ju + jm = js + 2 uV

= js + (2 o 2 s)V = (js sV) + (2 o s)V

= (js sV) + nV,

which can only be true if the first term on the right-hand side is zero, and this condition
thus provides us with the means to estimate the bulk velocity V:
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V = js / s (12b)

Finally, the temperature can be determined:

1
m nT = (v V)(v V) f (v)d3v

all v

= vv f (v)d3v
all v

nVV

=
s
+

u
+

m
nVV =

s
+

u
+

u
+ 4 uVV 2Vju 2juV nVV

= 2
o s

+ (2 o + s)VV 2(Vjo + joV) (12c)

The procedure implemented in the code is iterative.  We first calculate the integrals o, jo,
and o (Equations 11a-c), using the entire observed distribution (and substituting finite-
difference summation for the integration).  From these integrals we obtain a first estimate
of the velocity (c.f., Equation 12b):

V 0( ) = jo / o (13)

With this estimated velocity, we separate the observed velocity space into the symmetric
and unbalanced parts by examining for each measurement point v whether or not its
mirrored point (2V(0)-v) also lies within the observed velocity space.  With this partition,
we calculate the sums for just the symmetric part (Equations 8a, 9a, and 10a), use
Equation 12b to find the corresponding velocity, re-determine the symmetric part of the
observation space, recalculate the sums for the new symmetric part, and continue this
iteration until the derived velocity converges.  In practice, we require either that the
magnitude of V not change by more than 1% from the previous value or that a maximum
of 15 iterations are completed.

When the final iterated value of V has been determined, we use the sums for the final
symmetric portion of the observation space for s, js, and s.  Combined with the values

o, jo, and o we obtained on the first pass through the data, we then use Equations 12 to
determine the desired moments.

With the temperature matrix determined according to Equation 12c, we then diagonalize
it, using the JACOBI subroutine from Numerical Recipes [Press et al., 2001], obtaining
the three eigenvalues and their corresponding eigenvectors.  We find the eigenvalue that
is most different from the other two and identify this with Tpara, and its associated
eigenvector we take to be the symmetry axis of the distribution.  In a perfect world, this
would be the magnetic field direction.  In practice, it is probably dominated by
instrument-response effects that are not completely removed in the analysis.  For Tperp,
we average the remaining two eigenvalues, recording also their ratio.

II.  Finite-Difference Approximation to Moment Integrals
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For the numerical implementation of the integrals discussed above, we follow the
development given by Thomsen et al. [1999]:

Calculation of the moments (Equations 1) involves integrating the phase space density,
weighted by various functions of the particle velocity, over velocity space:

Mn =  f(v') gn(v') d3v'
       =  dv'  d ' d ' v'2 sin ' f(v') gn(v'). (14)

This integration refers to the velocity-space properties in the ambient medium (v', ', '),
which are not necessarily the same as those measured at the satellite (v, , ).  In
particular, surface charging of the spacecraft causes incident particles to gain or lose
energy as they pass through the potential sheath around the spacecraft, and the first step
in evaluating these integrals is to identify the transformation between the measured
properties (v, , ) and the ambient properties (v', ', ').  The measured energy of a given
particle, E, is related to its energy at infinity (i.e., outside the spacecraft sheath), E', by

E =  E q sc

where q is the particle charge, and sc is the spacecraft potential.  Neglecting sheath
asymmetries and focusing (i.e., we assume that only the particle's energy and not its
direction of motion is altered by the potential), we have the relationships

 v = 2(E + q sc ) /m (15a)
  = (15b)
  = (15c)

Typically at Saturn, the spacecraft potential is positive since the overall charging is
dominated by photoelectron emission.  A positive potential can in principle be measured
by looking for the signature of trapped photoelectrons in ELS (note, however, that in
conditions of dense, cold plasma, such as Titan's ionosphere, or in eclipse conditions,
such as the SOI ring crossing, the potential can go slightly negative, and then ELS can
only tell that the potential is no longer positive).  Eventually, the ELS determination will
be the preferred method for obtaining sc for the SNG moments calculation.  Currently,
however, it must be input manually, and a single value (normally zero) is used for an
entire run.

The weighting functions gn needed for the moments in Equations 14 are separable
functions of the three velocity-space coordinates:

gn(v') = Vn(v') n( ') n( '),

where the functions Vn, n, and n for the moments of interest are listed in Table 1.
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Under the assumption that the distribution function is uniform over a particular velocity-
space element ( ', ', v'), the integral moments Mn can be approximated as weighted
sums of the phase space density over contiguous finite velocity-space elements:

Mn  Mn = i j k (f'ijk) [ i dv' v'2 Vn(v') ]

  [ j d ' sin ' n( ') ] [ k d ' n( ') ]

= i j k (f'ijk) Vni Qnj Fnk. (16)

In this equation, f'ijk is the phase space density of the particles with velocity v' in the
ambient medium.  However, by Liouville's theorem, the phase space density is conserved
along dynamical trajectories, so

f'ijk  = f (v') = f (v) = fijk,

where v and v' are related by Equations 15, and fijk is the phase space density measured at
the instrument, i.e.,

fsijk =
Csijk

siG jEi
2

s . (17)

In Equation 17, Csijk is the counts for species s measured in detector j at energy level i and
azimuth k.  The parameters in the denominator are

 = IMS accumulation interval = 0.0625 s

s = (2/ms
2) = 1.835e24 (mp/ms)

2 (cm4/eV2s4)
Ei = energy of level i (eV)
Gj = geometric factor of detector j = 1.5008e-3 cm2sr eV/eV

si = detection efficiency for species s at energy Ei

= (foil transmission)(dome grid trans)(MCP grid trans)(start efficiency)
= (0.66)(0.65)(0.9)(0.69) for SNG
= 0.266 (18)

The geometric factor Gj and the detection efficiency si are subject to revision pending
ongoing discussions and analysis, but the values given in (18) are the ones implemented
in Revision 0 of the code.  The values of Gj and si are listed as part of the output of the
code.

In Equation 16, i represents the integration over the ith v'-cell, with limits v'i1 to v'i2, and

similarly for j and k.  By Equations 15b and 15c, 'j1 = j1, 'j2 = j2, 'k1 = k1, and
'k2 = k2.  Thus, the moment sums of Equation 16 may be written as
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Mn = i j k fijk(vi, j, ik) Vni Qnj Fnik. (19)

The integrated elements Vni, Qnj, and Fnik are listed in Table 2.  Note that Vni must still
be evaluated at the free-space limits v'i1 and v'i2, which are related to the energy channel
edges according to Equation 15a, but this is the only place that the correction for the
spacecraft potential needs to be made.

Because of the way CAPS is actuated,  in the expressions for Fnik in Table 2 is not
constant from measurement to measurement.  Moreover, since the actuator may sweep
back and forth over the same look direction during the interval used for a particular
calculation, the azimuth is not necessarily a monotonic function of time, so the ik need to
be reordered before the corresponding  are computed.  These complications will be
addressed below in Section III.h.

The sums in Equation 19 extend over all 8 detectors (j) and all azimuthal sectors (each
corresponding to a single energy sweep, k).  The sum over the energy channels, i, could
be restricted to certain ranges, depending on the target population, but in the current
implementation, the entire energy range is included.

III.  Computational Steps

The steps involved in computing the numerical moments according to the above scheme
are summarized in Figure 1 and described as follows:

a) Specify run parameters.
In addition to the date and time range, the user can specify the number of A-cycles to be
included in each computed value of the moments.  Normally, this would be selected to
cover a full actuation cycle in order to have the best chance of catching the true centroid
of the distribution.  The user must also specify how many (and which) species to analyze.
The default value is 2 (H+ and O+).  Moreover, the method by which the SNG counts are
to be partitioned into these species must be specified.  The partition subroutine returns
values of the fraction of counts at a given energy (Fi) that should be assigned to a given
species (i).  The options currently available in the code are:

Method # Description
1 Fi = 1.0, all energies, all species
2 Fi hard-wired to TBD values
3 Fi determined by Reisenfeld TOF-ST analysis
4 Fi determined by Reisenfeld TOF-LEF analysis
5 for O+, Fi = 1 above E=4*EH,corot, 0 otherwise

for H+, Fi = 1 below EH,corot, 0 otherwise

Method 5 is based on the common presence in the energy-time spectrograms of two
distinct ion populations, separated at roughly 4*EH,corot, with dominantly O+ or water-
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group ions at the higher energies and H+ at the lower energies.  We have used this
method for our initial runs, pending more correct information from the TOF integrations.

b) Determine the telemetry mode.
This is necessary because the telemetry mode determines the number of energy and angle
channels that are included in each A-cycle of data.  This information also allows us to
populate the energy-level matrix.

c) Invert the cross-talk matrix.
Laboratory calibrations and IMS observations in the solar wind indicate that there is
cross-talk between the different IMS anodes, i.e., some fraction of particles that are
incident from the nominal look direction of a given anode will be counted instead at one
of the other anodes.  One current explanation of this cross-talk [M. Shappirio, personal
communication, 1/25/2005] is that the charge cloud emerging from the back of the Start
MCP stack may at times be deflected into the wrong anode.  Another possibility involves
scattering of a fraction of the incident ions.  Either way, we can account for the effect as
follows.  We assume that the observed counts in the jth detector are given by

C j = 1 ij

i j

 

 
 
 

 

 
 
 

 C j + ji  C i
i j (20)

where C'j is the true counts incident into detector j, and ij is the fraction of counts
incident on detector j that are scattered into detector i.  In matrix notation

C = A C (21)
where

Aij =
ji i j

1 lj i = j
l j

 

 
 

  

 

 
 

  (22)

From the observed counts, C, we can find the true counts, C', by inverting the coupling
matrix A:

 C = A 1 C (23)

We can estimate the coefficients Aij from laboratory or solar wind observations:  If the
beam is known to be coming into only one detector (say k), we can normalize the
observed counts in the other detectors by the counts in the target detector k, according to
Equation (20)

R jk

C j

Ck

=
jk

1 ik

i k
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In terms of the ratios Rjk, the coupling coefficients are

jk =
R jk

1+ Rlk

l k

 

 
 

 

 
 

(24)

Table 3 shows the average channel ratios Rjk derived from laboratory calibrations done
with the IMS-FM at Los Alamos, as well as the resulting coefficients jk.  When the
cross-talk removal is turned on, we compute the matrix elements Aij from these
coefficients according to Equation 24 and invert the matrix A to obtain the matrix A-1

needed to sharpen the distribution according to Equation 23.

Steps a-c are performed only once at the initiation of each run of the code.  The
computation of the moments for each set of A-cycles begins with step d:

d) Obtain the needed ancillary data.
This includes the spacecraft position, velocity, and attitude, as well as the orientation of
Saturn's spin axis.

e) Read specified number of A-cycles (data and actuator angles).
The counts data are placed in the matrix C(icyc,i,j,k), where icyc is the A-cycle number, i
is the energy level, j is the detector number, and k is the sweep number.

To do the calculation described above, each measurement needs to have associated with it
the appropriate look direction, which is given by the polar angle of the relevant detector
and the azimuth angle at the time of the measurement.  The azimuth angle is derived from
the actuator angles provided in the data record.  However, only a limited number of
actuator values are provided, and to obtain the azimuth of any particular measurement,
we need to interpolate between the reported actuator values.  Thus, in this step the
actuator angles in the data file are read in and interpolated to associate a specific actuator
angle with each energy level in each sweep.  This interpolation is straightforward when
the SNG data are not collapsed in azimuth, but more difficult when collapse is required
by the telemetry rate.  Our approach is a two-step process: First we interpolate linearly
between the reported actuator values (4 or 32, depending on the telemetry) to fill a full 8
az x 64 en matrix of act values.  Then we collapse this full matrix by averaging in the
same manner as the corresponding counts matrix.

Finally, the derived actuator angles are converted to look azimuth in the spacecraft
coordinate system according to the relation

Look Azimuth = 270º - Actuator Angle

f) Remove background.
Energetic radiation belt particles can penetrate the CAPS instrument and directly
stimulate the microchannel plates, producing a background count rate that can be very
substantial.  For SNG, removal of the background is relatively straightforward, since its
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contribution to the count rate of the instrument should be independent of the voltage
setting on the plates and roughly independent of the azimuth.  For various reasons, there
might be some variation of the background from anode to anode, so background removal
is done separately for each anode according to the following procedure.

For each A-cycle and at each energy level, the counts in each detector are averaged over
all the separate azimuths.  To improve the statistics, an additional average is done over
every three energy levels.  If the minimum such 3-channel average in detector j for that
A-cycle is <Cj>min, the average background for detector j is estimated to be

Bj = <Cj>min + sqrt(<Cj>min). (25)

The sqrt term in Equation 25 is added under the assumption that for a Poisson-distributed
background, the minimum observed rate is probably below the average by something like
one standard deviation.  The estimated average background Bj is then subtracted from all
of the measured count-rate bins for detector j.

g) Sharpen distribution by removing cross-talk.
As described above in Section III.c, the background-corrected counts are sharpened
according to Equation 23.

h) Perform species partition.
The total counts observed in each bin are partitioned according to the energy-dependent
partition method specified in the input data (Section III.a):

CP(s,icyc,i, j,k) = F(s,i) C(s,i, j,k)

As illustrated in Figure 1, it is this species-partitioned counts matrix that is passed to the
subroutine that does the actual numerical integrations.

i) Rank-order azimuth angles and determine .
As discussed above in Section II, the formalism we are using requires that the azimuths
be reordered to be monotonically increasing before the azimuth elements  in Table 2
are computed.  To do this, we use the sorting routine sort3 from Numerical Recipes
[Press et al., 2001], which returns the rank-ordered list of azimuth values and their
corresponding A-cycle and azimuth index.  We only need to do this for the first energy
level of each sweep, since  should be essentially the same for all the energy levels in a
given sweep.

j) Smooth counts matrix in azimuth and fill distribution function matrix.
Because of the uneven sampling in azimuth caused by the actuator motion, it is possible
that several points within the distribution being analyzed might lie quite close to each
other in azimuth.  This is certainly the situation during intervals when the actuator was
not moving, in which case the reported values of azimuth vary only by the uncertainties
inherent in the actuator monitor readings.  The contribution to the moments sums (Eq. 16)
from each measurement is weighted by the azimuth separation  between that
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measurement and the next nearest azimuth.  Thus, closely clustered measurements would
tend to have little influence in the calculation.  To rectify this, we smooth the observed
distribution by replacing each value with the average of all the points that lie within 4.15
degrees in azimuth of it.  This value is one-half of the intrinsic azimuthal response of the
IMS detector.  This smoothed value of the counts is then converted to phase space density
according to Equation 17.

k) Compute the integrated moment elements (Table 2).
With  determined as described in Section III.i, and the velocity bin-edges (v'i1 and v'i2)
corrected for the spacecraft potential according to Equation 15a, the moments elements
V(n,i), Q(n,j), and F(n,i,k) in Table 2 are computed.

l) Compute moments.
With the integrated moments elements determined, the moment sums indicated in
Equation 19 can be performed, and the various desired moments (Equation 1) estimated.
On the first pass through the spectrum, all of the measurements are included, and these
initial moments values are saved for later use in the calculation and are also part of the
output produced by the code.  From there on, the iterative procedure described in Section
I is followed, until the derived velocity is unchanged to within the specified tolerance
(1%) or until a specified maximum number of iterations (15) have been done.  In the
latter case, the reported number of iterations is set to -15.  Both the initial moments
values and the final ones are then reported back to the main program.

m) Convert to Saturn coordinates.
The moments returned from the subroutine, as described above, were computed in the
spacecraft frame.  Upon return to the main program, the vector quantities (the velocities
and the symmetry axes derived from diagonalizing the temperature matrix) are rotated
into the J2000 coordinate system.  To obtain the flow velocity in inertial coordinates, the
spacecraft velocity is added to the rotated velocity.  Finally, the flow components in an
inertial, Saturn-centered, equatorial frame (vr, v , v ) are determined.

IV.  Caveats

There are a number of areas of concern regarding the moments derived from SNG data
according to the program described above.

a)  None of the various species-partition methods is fully satisfactory.  Even
method 5, based on TOF analysis, can be significantly in error if time variations in the
spectra and composition occur on a shorter time scale than the interval required to
accumulate statistically significant counts in a TOF spectrum.  Note, however, that the
entire formalism described above is also applicable directly to the IMS-IONS data
product, where the species identification has already been done onboard.

b)  The derived velocity will by construction lie within the instrument field of
view.  When the FOV actually encompasses the flow velocity, this is not a problem.  But
when the flow is not directly into the instrument, the returned values will not be correct.
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c)  The method is predicated on the actuation of the instrument back and forth
across the distribution.  When CAPS is not actuating, the interative scheme will fail.  The
analysis will still return the initially-derived values of the moments, but the reported
direction of the flow velocity will simply correspond to the look direction of the
instrument.  Furthermore, the density will be much underestimated because the initial
moments are just the sum over the small slice of the distribution that is actually observed.
To provide a rough way to correct for this underestimate, the code returns the nominal
range of azimuth that is included in the calculation (the minimum and maximum azimuth
values encountered).  Combined with the reported temperatures in the v and  directions
and an assumption about the Maxwellian nature of the distribution, a density correction
factor can be estimated.  However, a more sophisticated approach than the numerical
integration employed here is clearly called for under these circumstances.

d)  Because of the 1/E2 dependence of the distribution function, the computed
moments (at least for H+) are very strongly influenced by counts in the lowest energy
channels, which are likely random background and difficult to remove completely.
Therefore, the code zeroes out the channels below a specified energy value. This cutoff
energy is one of the input parameters ("Number of energies to exclude") and for most of
our runs is set at ~9 eV (channel # greater than 50, with channel 1 the highest energy).  A
lower value will need to be used in the innermost part of the magnetosphere, where the
real signal descends to low energies.

V.  Reported Results

The results of the above calculations are printed to an ASCII file, with a name of the form
SNG_200430118_M0.txt.  The header and contents of the output file are as follows:

Sample Header (lines demarcated by initial #)
# SNG MOMENTS
# October 27, 2004 DOY 301 0000 - 0600
#
# Generated: Thu Feb 10 08:36:12 MST 2005
#
# Input Parameters:
# Number of Acycles in each fit:       13
# Number of species to compute:        3
# Desired species:        3
# Partition Method:        5
# Start Date: (yyyydoy)      2004301
# Stop Date: (yyyydoy)      2004301
# Number of energies to exclude:       13.0000
#
# CODE: REV0.0
#
#
# Column headings
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Parameters (1 line for each spectrum, parameters separated by 1 or more blank spaces,
carriage return at end of line)
1. year
2. doy
3. Hour
4. Min
5. Sec
6. H_iterations    Number of iterations in H+ calculation (-x if no convergence
within x iter)
7. H_points_total    Number of individual measurements in full initial H+
distribution
8. H_points_iter    Number of individual measurements in final iterated H+
distribution
9. H_azimuth_min    minimum azimuth included in H+ moments calculation (deg)
10. H_azimuth_max    maximum azimuth included in H+ moments calculation (deg)
11. H_initial_density    initial H+ density (cm-3)
12. H_initial_vx_sc    x-component (s/c frame) of initial H+ flow velocity (km/s)
13. H_initial_vy_sc    y-component (s/c frame) of initial H+ flow velocity (km/s)
14. H_initial_vz_sc    z-component (s/c frame) of initial H+ flow velocity (km/s)
15. H_initial_Tmax     max eigenvalue of diagonalized initial H+ temperature matrix
(eV)
16. H_initial_Tmid     middle eigenvalue of diagonalized initial H+ temperature
matrix (eV)
17. H_initial_Tmin     min eigenvalue of diagonalized initial H+ temperature matrix
(eV)
18. H_iter_density    iterated H+ density (cm-3)
19. H_iter_vx_sc    x-component (s/c frame) of iterated H+ flow velocity (km/s)
20. H_iter_vy_sc    y-component (s/c frame) of iterated H+ flow velocity (km/s)
21. H_iter_vz_sc    z-component (s/c frame) of iterated H+ flow velocity (km/s)
22. H_iter_Tpara    iterated H+ temperature eigenvalue parallel to inferred symm axis
(eV)
23. H_iter_Tperp    iterated H+ temp eigenvalue perpendicular to inferred symm axis
(eV)
24. H_iter_Tperp_ratio    ratio of T eigenvalues perpendicular to iterated H+
symmetry axis
25. H_iter_symax_xsc    s/c x-component of iterated H+ symmetry axis
26. H_iter_symax_ysc    s/c y-component of iterated H+ symmetry axis
27. H_iter_symax_zsc    s/c z-component of iterated H+ symmetry axis
28. H_iter_velcheck    (magnitude of H+ velocity change in last iteration)/(final H+
velocity)
29. O_iterations    Number of iterations in O+ calculation (-x if no convergence
within x iter)
30. O_points_total    Number of individual measurements in full initial O+
distribution
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31. O_points_iter    Number of individual measurements in final iterated O+
distribution
32. O_azimuth_min    minimum azimuth included in O+ moments calculation (deg)
33. O_azimuth_max    maximum azimuth included in O+ moments calculation (deg)
34. O_initial_density    initial O+ density (cm-3)
35. O_initial_vx_sc    x-component (s/c frame) of initial O+ flow velocity (km/s)
36. O_initial_vy_sc    y-component (s/c frame) of initial O+ flow velocity (km/s)
37. O_initial_vz_sc    z-component (s/c frame) of initial O+ flow velocity (km/s)
38. O_initial_Tmax     max eigenvalue of diagonalized initial O+ temperature matrix
(eV)
39. O_initial_Tmid    middle eigenvalue of diagonalized initial O+ temperature
matrix (eV)
40. O_initial_Tmin    min eigenvalue of diagonalized initial O+ temperature matrix
(eV)
41. O_iter_density     iterated O+ density (cm-3)
42. O_iter_vx_sc    x-component (s/c frame) of iterated O+ flow velocity (km/s)
43. O_iter_vy_sc    y-component (s/c frame) of iterated O+ flow velocity (km/s)
44. O_iter_vz_sc    z-component (s/c frame) of iterated O+ flow velocity (km/s)
45. O_iter_Tpara    iterated O+ temperature eigenvalue parallel to inferred symm axis
(eV)
46. O_iter_Tperp    iterated O+ temp eigenvalue perpendicular to inferred symm axis
(eV)
47. O_iter_Tperp_ratio    ratio of T eigenvalues perpendicular to iterated O+
symmetry axis
48. O_iter_symax_xsc    s/c x-component of iterated O+ symmetry axis
49. O_iter_symax_ysc    s/c y-component of iterated O+ symmetry axis
50. O_iter_symax_zsc    s/c z-component of iterated O+ symmetry axis
51. O_iter_velcheck    (magnitude of O+ velocity change in last iteration)/(final O+
velocity)
52. H_initial_vr    radial component of initial H+ velocity in SSQ* frame (km/s)
53. H_initial_vphi    azimuthal component of initial H+ velocity in SSQ* frame
(km/s)
54. H_initial_vtheta    polar component of initial H+ velocity in SSQ* frame (km/s)
55. H_iter_vr    radial component of iterated H+ velocity in SSQ* frame (km/s)
56. H_iter_vphi    azimuthal component of iterated H+ velocity in SSQ* frame (km/s)
57. H_iter_vtheta    polar component of iterated H+ velocity in SSQ* frame (km/s)
58. H_iter_symax_x    x-component of the iterated H+ symmetry axis (??? frame)
59. H_iter_symax_y    y-component of the iterated H+ symmetry axis (??? frame)
60. H_iter_symax_z    z-component of the iterated H+ symmetry axis (??? frame)
61. O_initial_vr    radial component of initial O+ velocity in SSQ* frame (km/s)
62. O_initial_vphi    azimuthal component of initial O+ velocity in SSQ* frame
(km/s)
63. O_initial_vtheta    polar component of initial O+ velocity in SSQ* frame (km/s)
64. O_iter_vr    radial component of iterated O+ velocity in SSQ* frame (km/s)
65. O_iter_vphi    azimuthal component of iterated O+ velocity in SSQ* frame (km/s)
66. O_iter_vtheta    polar component of iterated O+ velocity in SSQ* frame (km/s)
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67. O_iter_symax_x    x-component of the iterated O+ symmetry axis (??? frame)
68. O_iter_symax_y    y-component of the iterated O+ symmetry axis (??? frame)
69. O_iter_symax_z    z-component of the iterated O+ symmetry axis (??? frame)
70. min(bkgd(*,0))    min value (over current A-cycles) of bkgd subtracted from
anode 1
71. max(bkgd(*,0))    max value (over current A-cycles) of bkgd subtracted from
anode 1
72. min(bkgd(*,1))    min value (over current A-cycles) of bkgd subtracted from
anode 2
73. max(bkgd(*,1))    max value (over current A-cycles) of bkgd subtracted from
anode 2
74. min(bkgd(*,2))    min value (over current A-cycles) of bkgd subtracted from
anode 3
75. max(bkgd(*,2))    max value (over current A-cycles) of bkgd subtracted from
anode 3
76. min(bkgd(*,3))    min value (over current A-cycles) of bkgd subtracted from
anode 4
77. max(bkgd(*,3))    max value (over current A-cycles) of bkgd subtracted from
anode 4
78. min(bkgd(*,4))    min value (over current A-cycles) of bkgd subtracted from
anode 5
79. max(bkgd(*,4))    max value (over current A-cycles) of bkgd subtracted from
anode 5
80. min(bkgd(*,5))    min value (over current A-cycles) of bkgd subtracted from
anode 6
81. max(bkgd(*,5))    max value (over current A-cycles) of bkgd subtracted from
anode 6
82. min(bkgd(*,6))    min value (over current A-cycles) of bkgd subtracted from
anode 7
83. max(bkgd(*,6))    max value (over current A-cycles) of bkgd subtracted from
anode 7
84. min(bkgd(*,7))    min value (over current A-cycles) of bkgd subtracted from
anode 8
85. max(bkgd(*,7))    max value (over current A-cycles) of bkgd subtracted from
anode 8

*SSQ frame = inertial Saturn-centered equatorial coordinate system
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Table 1.  Moment Functions
n Mn Vn(v) n( ) n( )
1 n 1 1 1
2 nvx v sin cos
3 nvy v sin sin
4 nvz v cos 1
5 nvxvx v2 sin2 cos2

6 nvxvy v2 sin2 cos  sin
7 nvxvz v2 sin  cos cos
8 nvyvy v2 sin2 sin2

9 nvyvz v2 sin  cos sin
10 nvzvz v2 cos2 1

Table 2.  Integrated Moment Elements
n Mn Vni Qnj Fnik

1 n (v'i23 - v'i13)/3 cos j1 -cos j2

2 nvx (v'i24 - v'i14)/4 /2 - (sin2 j2 - sin2 j1)/4 2cos ik sin( /2)
3 nvy V2i Q2j 2sin ik sin( /2)
4 nvz V2i (sin2 j2 - sin2 j1) / 2 F1ik

5 nvxvx (v'i25 - v'i15)/5 [cos j1 (sin2 j1 + 2)
  - cos j2 (sin2 j2 + 2)] / 3

/2 + (1 - 2sin2 ik)
 sin( /2) cos( /2)

6 nvxvy V5i Q5j 2 sin ik cos ik
 sin( /2) cos( /2)

7 nvxvz V5i (sin3 j2 - sin3 j1) / 3 F2ik

8 nvyvy V5i Q5j /2 - (1 - 2sin2 ik)
 sin( /2) cos( /2)

9 nvyvz V5i Q7j F3ik

10 nvzvz V5i (cos3 j1 - cos3 j2) / 3 F1ik

Table 3.  Cross-Talk Coefficients from Laboratory Calibrations
|j-k| Rjk jk

0 1.0 0.748
1 0.135 0.101
2 0.0199 0.015
3 0.00915 0.007
4 0.00469 0.004
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Figure 1.  Flow chart for numerical moments computation from CAPS/IMS-SNG.
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